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1 Proofs

Proof of Proposition 1.

Denote by J(η) :=
∣∣∣det

(
dθi/dηj

)∣∣∣ the absolute value of the determinant of the Ja-

cobian matrix corresponding to the transformation (θ1, . . . , θd) 7→ (φ1(θ1), . . . , φd(θd)) =

(η1, . . . , ηd). For i = 1, . . . , d since each φi transforms θi individually, J(η) =
∏d

i=1 dθi/dηi.

Then,

E1/2(ψq;η) =

∫
Θ

ψf (x,η)
d∏
i=1

ψqi(ηi)dη =

∫
Θ

ψf (x,θ)
d∏
i=1

ψqi(θi)J(η)dη

=

∫
Θ

ψf (x,θ)
d∏
i=1

ψqi(θi)dθ = E1/2(ψq;θ).

Proof of Proposition 2.

m(x)α =
[ ∫

Θ

f(x,θ)dθ
]α

=
[ ∫

Θ

f(x,θ)

q(θ)
q(θ)dθ

]α
= g

(
Eq
[f(x,θ)

q(θ)

])
,

1



where g(y) = yα is concave on y > 0 and 0 < α < 1. Using Jensen’s inequality, we obtain:

m(x)α ≥ Eq

[
g
(f(x,θ)

q(θ)

)]
=

∫
Θ

(f(x,θ)

q(θ)

)α
q(θ)dθ =

∫
Θ

f(x,θ)αq(θ)1−αdθ,

which is equivalent to Eα since f = ψ2
f and q = ψ2

q . Taking the natural logarithm on both

sides, we obtain α lnm(x) ≥ ln Eα(ψq; ·). Further, consider ln Eα(ψq; ·) = lnEq

[(f(x,θ)

q(θ)

)α]
.

Since ln is a concave function, using Jensen’s inequality again we obtain:

lnEq

[(f(x,θ)

q(θ)

)α]
≥ Eq

[
ln
(f(x,θ)

q(θ)

)α]
= αEq

[
ln
(f(x,θ)

q(θ)

)]
= αH(f, q).

Thus, for 0 < α < 1 we have

α lnm(x) ≥ ln Eα(ψq; ·) ≥ αH(f, q).

Similarly, for part (ii) of the proposition, noting that g(y) = yα is convex for y > 0 and

α > 1, using Jensen’s inequality we obtain:

α lnm(x) ≤ ln Eα(ψq; ·).

Proof of Proposition 3.

The directional or Fréchet derivative DiEα at a point ψqi ∈ Ψ is defined as a lin-

ear functional Tψqi
(Ψ) → R, the element of the dual space of Tψqi

(Ψ), via the relation

DiEα(vi) = 〈DiEα, vi〉 for all vi ∈ Tψqi
(Ψ) since Tψqi

(Ψ) is a linear subspace of L2(Θi),

the Hilbert space of square-integrable functions on Θi, and inherits the usual inner prod-

uct. The Riesz representation theorem implies that the gradient ∇E iα exists as an element

of Tψqi
(Ψ) and is defined such that DiEα(vi) = 〈∇E iα, vi〉, vi ∈ Tψqi

(Ψ). Along a basis
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direction bki , we can therefore express the gradient as

∇E iα =
∞∑
k=1

DiEα(bki )b
k
i .

Therefore, on the restriction Eα|Ψ : Ψ → R>0 to Ψ for each i = 1, . . . , d, the directional

derivative DiEα along bki can be computed as

DiEα(bki ) = lim
t→0

1

t

[
Eα|Ψ(ψqi + tbki )− Eα|Ψ(ψqi)

]
= lim

t→0

1

t

[ ∫
Θ

ψf (x,θ)2α
∏
j 6=i

(ψqj(θj))
2(1−α)

{
(ψqi(θi) + tbki (θi))

2(1−α) − (ψqi(θi))
2(1−α)

}
dθ
]
.

With p = 2(1− α), using the binomial expansion for real powers we obtain

1

t

[
(ψqi(θi) + tbki (θi))

p
]

=
1

t

[
ψpqi(θi) + pψp−1

qi
(θi)tb

k
i (θi) +R(θi, α, t)

]
,

where R(θi, α, t) = O(m(θi, α)t2) with m(·, ·) a function of only θi and 2(1−α). Therefore,

DiEα(bki ) = lim
t→0

[ ∫
Θ
ψf (x,θ)

2α
∏
j 6=i

(ψqj (θj))
2(1−α)

{
2(α− 1)ψ1−2α

qi (θi)b
k
i (θi) +

1

t
R(θi, α, t)

}
dθ
]

= 2(α− 1)

∫
Θ
ψf (x,θ)

2α
∏
j 6=i

(ψqj (θj))
2(1−α)ψ1−2α

qi (θi)b
k
i (θi)dθ

+ lim
t→0

∫
Θ
ψf (x,θ)

2α
∏
j 6=i

(ψqj (θj))
2(1−α) 1

t
R(θi, α, t)

}
dθ. (1)

For fixed (x, α) ∈ X × (0,∞)\{1}, the sequence of functions

Θ 3 θ 7→ Ht(x,θ, α) := ψf (x,θ)2α
∏
j 6=i

(ψqj(θj))
2(1−α) 1

t
R(θi, α, t)

converges to H(x,θ, α) := ψf (x,θ)2α
∏

j 6=i(ψqj(θj))
2(1−α) as t → 0 with |H(x,θ, α)| < ∞

since q(θ) is strictly positive based on our assumptions. The result follows by an applica-

tion of the dominated convergence theorem to the second integral in Equation 1.
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Proof of Proposition 4.

We prove the result for the case when α = 1/2 to avoid cumbersome notation; the case

of a general α can be worked out along the lines of the proof of Proposition 3 using the

binomial expansion with real-valued powers. We use the result provided in Proposition 3.2

of Ring and Wirth (2012) to prove our claim. They state that a sufficient condition to

ensure the existence such an ε is that the restriction of Ẽ iα to the linear span of the set {vi}

be continuously differentiable.

Suppose we choose basis functions Bi for Tψqi
(Ψ) that are bounded (in L2) and smooth

(e.g., Fourier basis). Observe then that from the expression of the gradient ∇E iα in Proposi-

tion 3, differentiability of Ẽ iα depends solely on the existence and continuity of the directional

derivative at vi ∈ Tψqi
(Ψ) along a direction bi, defined as

DiEα ◦ exp(vi)(bi) := lim
t→0

1

t

[
Ẽα|Ψ(ψqi + tbi)− Ẽα|Ψ(ψqi)

]
.

For convenience, denoting a function h(·) as h, similar calculations as in the proof of

Proposition 3 results in

DiEα ◦ exp(vi)(bi) =
∫
Θ

ψf
2expψqi

(vi)

A(vi)

‖vi‖

[
vi

2‖vi‖2
− ψqi sin(‖vi‖)

2
+
bi sin(‖vi‖)
A(vi)

+
vi cos(‖vi‖)

2‖vi‖

]
dθ,

where A(vi) := ‖bi‖2 + 2‖vi‖‖bi‖. It’s easy to verify that DiEα ◦ exp(vi)(bi) is finite for

every choice of bi and vi as long as vi 6= 0.

The directional derivative DiEα ◦ exp(vi)(bi) is clearly a linear operator from Tψqi
(Ψ)→

R. The space Ψ, which is the positive orthant of the unit sphere S∞ in L2(Θi), is an open

subset of S∞ (Theorem 3.2 of Khesin et al. (2013)) and hence a Hilbert submanifold of

S∞. The domain of the exponential map expψqi
is all of Tψqi

(Ψ) and hence maps every

element of Tψqi
(Ψ) to Ψ. Therefore it is a diffeomorphism from Tψqi

(Ψ) to Ψ and clearly

continuous.
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Consider a sequence vi,n such that ‖vi,n − vi‖ → 0. Noting that the norm function

x 7→ ‖x‖ is continuous in L2, it is easy to see that every term inside the integral is a

continuous function of vi. This implies that DiEα ◦ exp(vi,n)(bi) → DiEα ◦ exp(vi)(bi) as

n→∞. For a finite N chosen in the algorithm that determines the number of iterations,

the argument can be extended to any linear combination of possible directions
∑N

j=1 αi,jvi,j

on each tangent space Tψqi
(Ψ), and thus to the span under consideration. This completes

the proof.

2 Bayesian Linear Regression

All of the following run time experiments were performed in Matlab on an Intel Core i7

processor (3.40 GHz) with 8 GB of RAM.

2.1 Run Time Comparison for Gibbs Sampler and Proposed Method

d n
MSE Gibbs (Time)

iter : 5000, burn-in: 1000
MSE PM (Time)

MSE Gibbs (Time)
iter : 30000, burn-in: 5000

MSE PM (Time)

25 100 1.0034e-05 (6.9151 ) 9.5201e-06 (1.3692 ) 7.0139e-07 (40.8964 ) 5.2551e-07 (1.8097 )
50 100 1.7488e-05 (16.2920 ) 1.7234e-05 (9.9007 ) 4.9125e-06 (96.8816 ) 4.7913e-06 (11.2436 )
75 100 2.2089e-04 (27.9082 ) 2.1717e-04 (24.2695 ) 1.8478e-05 (165.5516 ) 1.8268e-05 (39.1568 )
100 200 7.0274e-06 (60.0844 ) 6.8176e-06 (37.2117 ) 1.0505e-06 (381.3203 ) 9.9089e-07 (47.4571 )

Table 1: Comparison of running times (in seconds) between the Gibbs sampler and the
proposed method (PM) with α = 0.5.

In Table 1, we compare the running times of our method to the Gibbs sampling ap-

proach. For each choice of d, a dataset of size n is generated. First, we apply the Gibbs

sampler with two choices of the total number of iterations and burn-in. The MSE in each

case is noted along with the respective running time. Next, we fix α = 0.5 and apply our

method to the same dataset. We continue to update the corresponding qis in each case

and run the algorithm as long as the MSE for the proposed method is larger than the one

obtained using the Gibbs sampling technique. We stop the algorithm as soon as the MSE

for our method becomes smaller than the Gibbs MSE and note the running time. It can
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be easily seen that the proposed variational method attains the MSE obtained by Gibbs

sampling much faster in each case.

2.2 Effect of Basis Size on Run Time

d = 10 d = 25 d = 50 d = 100 d = 200
n = 100 n = 100 n = 100 n = 500 n = 500

N = 49 0.1151 0.5717 4.2978 12.6686 76.2938
N = 99 0.1748 0.9445 6.3781 14.1433 106.5231
N = 199 0.2892 1.4250 8.8313 21.6562 138.5783
N = 499 1.5809 7.7542 39.7014 72.8446 377.8602

Table 2: Comparison of running times (in seconds) for varying number of basis elements
(N), sample size (n) and dimensionality (d) with α = 0.5.

In our setup, the tangent space for each qi is spanned by a finite collection of pre-

specified orthonormal basis functions. We indicated in the main paper that increasing the

number of basis elements leads to better approximations of the posterior. Table 2 shows the

running times for our method for different choices of dimensionality d and sample size n as

we vary the number of basis functions N . In this simulation, we use α = 0.5. The proposed

algorithm is fast for a moderately sized dataset even with N = 199 basis elements, i.e., run

time is under 10 seconds for a dataset of dimension d = 50, and sample size n = 100.

3 Bayesian Density Estimation

3.1 Effect of Sample Size on Density Estimation

Figure 1 shows the effect of the sample size n on density estimation under the proposed

approach. As is common with other nonparametric density estimation techniques, we can

see that with the increase in sample size, we obtain a better estimate of the true density

function. Again, the proposed method with α = 0.9 performs favorably compared to

standard kernel density estimation.
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n = 25 n = 200 n = 1000

Figure 1: Effect of increasing the sample size on density estimation. Data was generated
from a N(0,1).

3.2 Effect of α on Density Estimation

Next, we assess the effect of α on density estimation in Figure 2. The plot in the left

panel of Figure 2 shows the results for standard VB (i.e., α → 0) and EP (i.e., α → 1)

in the limiting case, as noted in Section 3.1 in the main paper. We note that, using the

proposed Dα-based approach, we are able to explore a richer class of divergences with minor

adjustments by simply changing the value of α accordingly. The right panel shows similar

results for α = 1.1 and α = 2.

Figure 2: Effect of different choices of α on density estimation. Data was generated from
a N(0,1).

4 Bayesian Logistic Regression for Real Data Applications

We report the accuracy and average log predictive likelihood (ALPL) of the proposed

method on two multi-label datasets 1 considered in Wang and Blei (2013). As in the main

1http://mulan.sourceforge.net/datasets.html
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paper MAP, PMEA, PMED and PPRED represent the maximum a posteriori, posterior

mean, posterior median and posterior predictive, respectively, under the proposed approach.

The results based on these summaries for KLD-based VB are also reported under KLMAP,

KLMEA, KLMED and KLPRED.

4.1 Yeast Data

MAP PMEA PMED PPRED KLMAP KLPMEA KLPMED KLPPRED
Accuracy (in %) 79.5 79.5 79.4 79.6 79.3 79.2 79.3 79.2

ALPL -0.6587 -0.6579 -0.6595 -0.6576 -0.6718 -0.6731 -0.6734 -0.6723

Table 3: Classification results for the the yeast dataset.

The yeast dataset (Elisseeff and Weston, 2001) is composed of micro-array expression

data and phylogenetic profiles with 1500 genes in the training set and 917 in the test set.

For each gene, we have 103 covariates and up to 14 different gene functional classes, making

it a multi-label problem. This can be reformulated into 14 separate binary classification

tasks, similar to the problem studied in Wang and Blei (2013).

We use 299 basis elements for this dataset, and choose α = 0.9. Table 3 presents the

classification results, averaged over the 14 binary problems, obtained under this setup. The

results for all of the methods are very similar in this case. The ALPL values based on all

of the Dα summaries in Table 3 are greater than the KLD-based summaries, indicating

better fit. Wang and Blei (2013) report accuracy rates of 80.1% and 80.2%, and ALPL val-

ues of -0.449 and -0.450 using Laplace inference and delta method inference, respectively.

The method of Jaakkola and Jordan (1997) gives accuracy of 79.7% and an ALPL value

of −0.678. However, note that both of those papers used cross-validation to evaluate the

performance of their algorithm, which is different from the training-testing split consid-

ered here. Nonetheless, the proposed method produces results that are comparable to the

previously reported classification results.
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MAP PMEA PMED PPRED KLMAP KLPMEA KLPMED KLPPRED
Accuracy (in %) 88.3 88.6 84.1 88.6 82.7 85.7 83.1 85.9

ALPL -0.5649 -0.5596 -0.6375 -0.5584 -0.8375 -0.7653 -0.8425 -0.7581

Table 4: Classification results for the scene dataset.

4.2 Scene Data

The scene dataset was used for the problem of semantic scene classification in Boutell

et al. (2004), where a scene might contain different objects such that it can be described

by multiple class labels. The dataset contains 1,211 images in the training set and 1,196

images in the test set. The images consist of 294 image features that can be used to

predict scene labels. There are up to six scene labels per image. Analogous to the previous

example, this corresponds to six separate binary classification problems.

We use 299 basis elements to estimate the energy gradient in this classification problem,

and choose α = 1.1. The classification results, averaged over the six binary problems,

obtained using the summary measures based on the proposed Dα-based VB and KLD-

based VB are presented in Table 4. With the exception of the posterior median, summaries

based on Dα perform better than those of Jaakkola and Jordan (1997) (they achieve 87.4%

accuracy). Moreover, the ALPL values based on Dα summaries are significantly higher

as well (they obtain a an ALPL value of −0.670). Our classification accuracy results are

comparable to the results obtained using Laplace inference and delta method inference

introduced in Wang and Blei (2013). Similar to the yeast example considered in Section

4.1, the results in those papers were generated via cross-validation, which is different from

our training-testing split setup.
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